文档视界 最新最全的文档下载
当前位置:文档视界 › 固相微萃取技术与气相色谱-质谱联用分析山核桃青果皮中的挥发油化学成分

固相微萃取技术与气相色谱-质谱联用分析山核桃青果皮中的挥发油化学成分

固相微萃取技术与气相色谱-质谱联用分析山核桃青果皮中的挥发油化学成分
固相微萃取技术与气相色谱-质谱联用分析山核桃青果皮中的挥发油化学成分

固相微萃取技术与气相色谱-质谱联用分析山核桃青果皮中的挥发油化学成分(作者:___________单位: ___________邮编: ___________)

【摘要】目的分析山核桃青果皮中的挥发油化学成分。方法采用固相微萃取法从山核桃青果皮中提取挥发油化学成分,应用气相色谱-质谱联用技术对其进行鉴定,用峰面积归一化法计算各组分的相对百分含量。结果分离得到65个组分,鉴定出其中55个成分, 所鉴定的组分占总峰面积的95.5%。结论山核桃青果皮中主要成分为(反式)-1- (2,6-二羟基-4-甲氧苯基)-3-苯基-2-丙烯-1-酮(36.69%)、β-谷甾醇(11.83%)、十六酸(10.762%)、(Z,Z) -9,12-十八烷二烯酸(6.644%)、2,3-二羟丙-反-油酸丙酯(6.538%)等。

【关键词】山核桃青果皮;挥发油;固相微萃取;气相色谱-质谱

Abstract:ObjectiveTo analyze the chemical constituents of the volatile oil in the green peel of Carya cathayensis Sarg.MethodsThe chemical constituents extracted from the green peel of Carya Cathayensis Sarg. by SPME separated and identified

by GC-MS. The relative content of each component was determined by area normalization. ResultsSixty-five kinds of components were separated. Among them, fifty-five components were identified, accounting about 95.5% of the total chemical constituents.ConclusionThe main chemical constituents of the green peel of Carya Cathayensis Sarg are 2-Propen-1-one, 1-(2,6-dihydroxy-4-methoxyphenyl) -3-phenyl-(E)(36.69%)、24(Z) –methyl-25-homocholesterol (11.83%)、Hexadecanoic acid(10.762%)、9,12-Octadecadienoic acid(6.644%)、2,3-Dihydroxypropyl elaidate(6.538%)ect.

Key words:Green peel of Carya cathayensis Sarg.; Volatile oil; SPME; GC MS

山核桃Carya cathayensis Sarg.,别名小核桃、胡桃、核桃楸luglansmandshurica,为胡桃科(Juglandaceae)核桃属(Juglans Linn)植物,主要分布于我国浙江临安、皖南山区和皖西大别山[1]。其味淡、微涩、寒,味甘、苦。近年来研究表明[2~6],该科植物具有抑制醛糖还原酶、抗肿瘤、镇痛消炎、抑菌、杀虫、清热利尿、明目解毒和生物毒性等活性。在采收山核桃时,山核桃外果皮除少量用于烧炭外,大多数作为废弃物处理,造成资源的极大浪费。为了有效利用废弃的山核桃外果皮,需要搞清楚其药效物质基础。

固相微萃取技术(solid-phase microextraction,SPME)[7]是Pawliszyn等人于1990年提出的一项新技术,它无需有机溶剂,简单方便,集采集、萃取、浓缩、进样于一体,具有分析速度快(一般2~30 min可达吸收平衡) 、灵敏度高、重复性好等优点。因此,本实验采用固相微萃取方法提取山核桃青果皮中的挥发油化学成分,采用气相色谱-质谱联用技术对其化学成分进行分析鉴定。共分离出了65个组分,鉴定出了其中55种化合物。所鉴定的组分占总峰面积的95.5%,利用峰面积归一化法计算出了各个峰的相对含量,为进一步研究其活性成分及开发利用资源提供了参考依据。

1 仪器与材料

Varian CP3800/1200L气相色谱-串联质谱联用仪(美国瓦里安公司);色谱柱:HP-5(30 m×0.25 mm,0.25 μm)石英毛细管柱;手动固相微萃取( SPME)装置(美国Supelco公司) ,萃取纤维头为:65 μm PDMS/DVB。山核桃外果皮采自浙江临安。

2 方法与结果

2.1 SPME条件

称取1.2 g 山核桃青果皮,适当切碎,置于15 ml专用采样瓶中,插入装有65 μm PDMS/DVB纤维头的手动进样器,磁力搅拌速度1 100 r·min-1,90℃下顶空萃取保持30 min取出,立即插入色谱仪进样口(温度250℃)中,脱附2.5 min。

2.2 GC-MS分析条件

2.2.1 气相色谱条件

色谱柱为HP-5(30 m×0.25 mm,0.25 μm)石英毛细管柱;升温程序:初始温度为40℃,保持2 min,然后以10℃·min-1 的速度升至270℃并保持15 min;进样口温度280℃,汽化室温度250℃;载气为氦气(He),流速1.0 ml·min-1,不分流,进样量1.0 ml,分流比50:1。

2.2.2 质谱条件

电子轰击(EI)离子源;电离能量70 eV,离子源温度200℃,扫描质量范围m/z:333~500 AMU;扫描速度0.5 s;检索的图谱数据库为Willey和NIST标准质谱图库。

2.3 化学与成分分析

采用HP-5毛细管柱,取样品适量,用气相色谱-质谱联用仪进行分析鉴定。化合物的定量采用面积归一化法,使用Hewlett-Packard软件处理系统计算各峰面积,以测得化学成分中各组分的相对百分含量;按照上述GC/MS条件对山核桃青果皮化学成分进行分析,得总离子流图见图1。

对总离子流图中各峰经过质谱扫描后,通过质谱数据系统(NIST和Willey标准图谱数据库)进行检索,并结合人工解析,鉴定出山核桃青果皮中的挥发油化学成分。结果见表1。表1 山核桃青果皮中挥发油化学成分分析结果(略)

由表1可见,用固相微萃取气相色谱/质谱联用技术分析了山核桃青果皮中的挥发油化学成分,共分离鉴定出55个成分,所鉴定的组

分占总峰面积的95.5%。相对质量分数最高的是(反式)-1-(2,6-二羟基-4-甲氧苯基)-3-苯基-2-丙烯-1-酮(36.69%)、其次为β-谷甾醇(11.83%)、十六酸(10.762%)、(Z,Z) -9,12-十八烷二烯酸(6.644%)、2,3-二羟丙基-反-油酸丙酯(6.538%)、(Z,Z)-9,12-十八烷二烯酸-2,3-二羟基丙酯(2.932%)、5-羟基-7甲氧基-黄酮(1.325%)等。确定的55种化学成分通过联用仪的计算机谱图库检索,除两种化学成分的相似度接近75%,其余53种化学成分的相似度都在75%以上,有较高的可信度。

3 讨论

采用SPME-GC/MS技术分析鉴定出山核桃青果皮中的挥发油化学成分主要包括有萜类化合物、烷烃类化合物、醇类化合物、酯类化合物等。其中部分化合物具有多种生物活性,如含量较高的β-谷甾醇具有降血脂、抗癌、抗炎等作用[8~12],在临床应用中含有β-谷甾醇或其衍生物的植物药, 常作为单味或配方出现在治疗各种疾病的药方中。从GC-MS分析看山核桃青果皮中的挥发油化学成分具有较大的应用价值,值得进一步开发利用。

【参考文献】

[1]胡旭姣, 赵肖君, 周奋. 山核桃提取物体外抗肿瘤作用研究[J]. 中华中医药学刊, 2007, 15(2) : 369.

[2]许绍惠, 唐婉屏, 韩忠环. 核桃楸毒性成分研究[J]. 沈阳农业大学学报, 1986, 17(2) : 34.

[3]杜旭, 王明晶, 姜力伟, 等. 中药青龙衣镇痛作用机理的研究[J]. 中国中医药科技, 1997, 4 (3) : 155.

[4]宛蕾, 陈秀芬, 杜江. 胡桃青皮抗炎及镇痛作用的研究[J]. 中国药理与临床, 1999, 15(2) : 29.

[5]张野平, 杨志博, 景永奎, 等. 胡桃醌对肿瘤细胞的增殖抑制作用和抗菌作用[J]. 沈阳药学院学报, 1993, 10(4) : 271.

[6]苑雅萍, 赵洪云, 秦香芹,等. 山核桃壳化学成分的研究[J]. 黑龙江医药, 2006, 19(1) : 33.

[7]黄志东. 固相微萃取技术及其在药物分析领域中的应用[J]. 现代仪器, 2003, 2: 15.

[8]魏金婷, 刘文奇. 植物药活性成分β-谷甾醇研究概况[J]. 莆田学院学报, 2007, 14(2) : 38.

[9]何萍, 李帅, 王素娟, 等. 半夏化学成分的研究[J]. 中国中药杂志, 2005, 30(9) : 671.

[10]郭书好, 潘珊珊, 刘慧琼, 等. 金水六君煎胶囊多指标成分分析[J]. 光谱实验室, 2004, 21(2) : 383.

[11]吴国欣, 林跃鑫, 欧敏锐, 等. 白芥子提取物抑制前列腺增生的实验研究[J]. 中国中药杂志, 2003,28(7) : 643.

[12]洪敏俐, 林向前. 球兰止咳糖浆制备及临床观察[J]. 时珍国医国药, 1999, 10(11) : 820.

气相色谱质谱联用仪技术指标(新)

气相色谱/质谱联用仪技术指标 1.2温度:操作环境15?C~35?C 1.3 湿度:操作状态25~50%,非操作状态5~95% 2.性能指标 2.1质谱检测器 2.1.1具有网络通讯功能,可实现远程操作。结构紧凑,无需冷却水及压缩空气冷却。 2.1.2*侧开式面板,无须取下质谱仪机盖即可进行维护。玻璃窗口可显示离子源类 型,灯丝运行情况和离子源连接状态。需提供彩页证明文件。 2.1.3质量数范围:2-1000amu,以0.1amu递增

2.1.4分辨率:单位质量数分辨 2.1.5质量轴稳定性: 优于0.10amu/48小时 2.1.6灵敏度: EI:全扫描灵敏度(电子轰击源EI):1pg八氟萘(OFN),信/噪比≥ 1400:1 (扫描范围: 50-300amu) 2.1.7*仪器检出限IDL:10fg八氟萘。并提供三份以上现场安装验收报告。 2.1.8最大扫描速率:大于19,000amu/秒 2.1.9动态范围:全动态范围为106 2.1.10选择离子模式检测(SIM)最多可有100组,每组最多可选择60个离子 2.1.11质谱工作站可根据全扫描得到的数据,自动选择目标化合物的特征离子并对其进 行分组,最后保存到分析方法当中,无须手动输入。(AutoSIM) 2.1.12具有全扫描/选择离子检测同时采集功能 2.1.13两根长效灯丝的高效电子轰击源,采用完全惰性的材料制成 2.1.14*离子化能量:5~241.5eV 2.1.15离子化电流:0~315uA 2.1.16离子源温度:独立控温,150~350?C可调 2.1.17*分析器:整体石英镀金双曲面四极杆,独立温控, 106?C ~200?C。非预四极杆 加热。需提供彩页等证明文件。 2.1.18质量分析器前有T-K保护透镜。 2.1.19检测器:三维离轴,检测器。长效高能量电子倍增器 2.1.20真空系统:250升/秒以上分子涡轮泵 2.1.21气质接口温度: 独立控温,100~350℃ 2.1.22TID 痕量离子检测技术,在数据采集的过程中优化信号。 2.1.23自动归一化调谐。 2.1.24EI源可以采用氢气做为载气,CI源可以采用氨气替代甲烷气。 2.1.25具备早期维护预报功能(EMF) 2.1.26可提供质量认证功能(OQ/PV) 2.2 气相色谱仪 2.2.1 主机 2.2.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,配有13路电子流量控制; 2.2.1.2 压力调节:0.001psi。 2.2.1.3 大气压力传感器补偿高度或环境变化; 2.2.1.4 程序升压/升流:3阶;

顶空固相微萃取-气相色谱-质谱联用

顶空固相微萃取-气相色谱-质谱联用 分析纺织品中挥发性有机物* 蔡积进张卓旻李攻科 中山大学化学与化学工程学院,广东,广州 510275 摘要本文以顶空固相微萃取(Head Space Solid Phase Microextraction,HSSPME)和 气相色谱-质谱(GC/MS)联用技术分析纺织品中的五种常见挥发性有机物(Volatile Organic Compounds,VOCs):甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯。 优化了顶空体积、平衡时间、萃取时间、萃取温度、搅拌速率、加盐种类和浓度以及GC/MS条件。建立了快速测定纺织品中VOCs的方法,方法对五种待测物质均具有较宽线性范围,分别为0.087~870,3.32~3320,2.28~2280,0.015~150和0.5~500 ng/g;检出限分别为0.005、0.042、0.67、0.008和0.011 ng/g。分析加标实际样品,回收率在80.1~122%之间,RSD在0.8~8.6%之间。方法符合纺织品中痕量VOCs 的快速分析要求。 关键词:固相微萃取;气相色谱-质谱;纺织品;挥发性有机物 生态纺织品标准100(Oeko-Tex Standard 100)[1]是纺织品领域通行的技术标准,严格规定了残留有毒、有害VOCs的释放量。为推动纺织品质量达到出口标准,需建立有效快速的VOCs 检测方法。由于纺织品VOCs的含量很低,常规的预富集浓缩方法很难满足分析需要,达不到相应的灵敏度要求。SPME是八十年代末Pawliszyn等[2]研制开发的一种非溶剂分析萃取技术,具有操作简单、萃取速度快、选择性和适应性好等优点。而HSSPME应用于纺织品中,一方面继承了顶空技术操作简单、不受样品基体干扰的优点;另一方面又能在采样的同时进行浓缩,大大提高了分析灵敏度。国内已有学者用SPME技术对纺织品中残留干洗溶剂(如四氯乙烯和三氯乙烯等)和驱虫剂(如二氯苯和萘等)进行分析[3~5]。本文建立了HSSPME-GC-MS联用分析纺织品中常见VOCs的分析方法,方法灵敏度高,重现性好,适合于纺织品中多种痕量挥发性有机物的分析。 1 实验 1.1 仪器及操作条件 1.1.1 仪器 SPME手动取样装置,100 μm聚二甲基硅氧烷(PDMS),电磁搅拌/加热操作台,搅拌子(3.0 mm×10.0 mm),10、15、40 mL顶端带有孔盖子和聚四氟乙烯隔垫的样品瓶(Supelco 公司)。HP-6890气相色谱仪带质谱检测(MSD-5973)配G1701B.02.05工作站(Hewlett-Packard, USA),所用色谱柱为HP-VOC熔融毛细管柱(60 m×0.32 mm×1.8 μm)。 1.1.2 GC-MS的操作条件 色谱条件:进样口温度为250 ℃,进样口关闭五分钟,不分流进样。采用程序升温,初始 资金项目:国家质检总局科研资助项目(2002IK034)、 中山大学化学院第四届创新化学实验与研究基金(批准号:03002号)。 第一作者:蔡积进(1982年出生),男,中山大学化学与化工学院材料化学专业00级 指导教师:李攻科,E-mail :cesgkl@https://www.docsj.com/doc/956139771.html,.

气相色谱质谱联用仪操作规程(精)

气相色谱质谱联用仪操作规程(定性部分) 1.开机 ①打开高纯氦气钢瓶的阀门,调节出口压力为7kgf/cm2左右,然后依次打开GC 电源和MS 电源,点击软件[GCMS Real Time Analysis],选择用户名,登录后进入。②点击设定系统的配置。 ③点击 [Vacuum Control] 真空系统。 2. 调谐,在随即出现的对话框中点击 [Auto Startup],启动 ①点击[GCMS Real Time Analysis]辅助栏中的[Turing],打开调谐窗口。②真空稳定后,点击[Peak Monitor View],进行泄漏检验。 确认m/z18、m/z28、m/z32、m/z69的关系及确认是否漏气:通常 m/z18>m/z28,表示不漏气;如果m/z28的强度同时大于m/z18,m/z69的两倍,表明漏气。③点击[Auto Tuning Condition],设置调谐条件。 通常使用默认的条件。 ④点击[Start Auto Tuning],进行自动调谐。 ⑤结束后,输出调谐报告。

在调谐报告中确认峰形、半峰宽、基峰、检测器电压和m/z502的丰度等。一般的要求如下: 峰形:没有明显的分叉,峰形对称 半峰宽:m/z69、m/z219、m/z502的半峰宽与设定值相差0.1 基峰:在质谱图中,m/z28的强度在m/z69的50%以下 检测器电压:要求小于1.5Kv m/z502的丰度:大于2% 质量数准确性:质谱图中的测量值与标准值之间相差在0.1以内 ⑥点击[File],选择[Save Tuning File As],保存调谐文件。 ⑦关闭调谐画面。 ******************************************************************** **** 注:检查漏气的方法如 1. 点击Tuning 之中的Peak Monitor View 2. 在 Monitor Group 菜单里选择[water,air],同时确认检测器的电压是 0.7Kv 。 3. 打开灯丝,观察m/z18、m/z28和m/z32的强度。如果需要比较m/z69的强度,请先关闭灯丝,选择打开PFTBA ,等待10秒钟以上,再打开灯丝。将m/z32改成m/z69。如果发现有漏气的情况,将m/z69改成m/z43。 4. 使用石油醚,在怀疑有漏气的部位检查,如果有漏气,则m/z43的峰会非常大。 5. 确认漏气的部位,进行相应的处理。

实验7 气相色谱-质谱联用技术定性鉴定混合溶剂的成分

实验七 气相色谱-质谱联用技术 定性鉴定混合溶剂的成分 I.实验目的 (1) 了解气相色谱-质谱联用技术的基本原理; (2) 学习气相色谱-质谱联用技术定性鉴定的方法; (3) 了解色谱工作站的基本功能。 II. 实验原理 质谱法是一种重要的定性鉴定和结构分析方法,但没有分离能力,不能直接分析混合物。色谱法则相反,它是一种有效的分离分析方法,特别适合于复杂混合物的分离,但对组分的定性鉴定有一定难度。如果把这两种方法结合起来,将色谱仪作为质谱仪的进样和分离系统,即混合试样进入色谱柱分离,得到的单个组分按保留时间的大小依次进入质谱仪测定质谱,这样就可以实现优势互补,解决复杂混合物的快速分离和定性鉴定。气相色谱-质谱联用(GC-MS )于1957年首次实现,并很快成为一种重要的分析手段广泛应用于化工、石油、食品、药物、法医鉴定及环境监测等领域。 气相色谱-质谱联用的主要困难是两者的工作气压不匹配。质谱仪器必须在10-3~10-4Pa 的高真空条件下工作,而气相色谱仪的流出物为常压(约100kPa ),因此需要一个硬件接口来协调两者的工作条件。当气相色谱仪使用毛细管柱时,因为每分钟几毫升的流量不足以破坏质谱仪的真空状态,所以可直接与质谱仪联用。 挥发性混合物从气相色谱仪进样,经色谱柱分离后,按组分的保留时间大小依次以纯物质形式进入质谱仪,质谱仪自动重复扫描,计算机记录和储存所有的质谱信息,然后将处理结果显示在屏幕上。质谱仪的每一次扫描都得到一张质谱图,色谱组分流入时得到的是组分的质谱图,没有色谱组分时得到的是背景的质谱图,计算机将质谱仪重复扫描得到的所有离子流信号(不分质荷比大小)的强度总和对扫描信号(即色谱保留时间)作图得到总离子流图,总离子流强度的变化正是流入质谱仪的色谱组分变化的反映,所以在GC-MS 中,总离子流图相当于色谱图,每一个谱峰代表了一个组分,谱峰的强度与组分的相对含量有关。下图是混合溶剂试样的总离子流图(a )和其中第4号峰的质谱图(b )。从总离子流图中出现的6个谱峰可以得知该混合溶剂中有6个组分;对质谱图(b )进行解析可知该组分的相对分子质量为100,图中有m/z29,43,57,71等一系列间隔14(相当于CH 2)的离子峰,说明该组分的结构中有长碳链,结合相对分子质量推测为庚烷,通过质谱标准谱库的检索验证,确定试样总离子流图的4号峰为正庚烷。 混合溶剂的总离子流图(a )和4号峰的质谱图(b ) III. 实验用品 仪器: 岛津公司GCMS-QP5050A 气相色谱-质谱联用仪,GCMS Solution 工作站,NIST 谱库。微量注射器(1μL ) 试剂: 混合试剂 异丙醇、乙酸乙酯、苯3种试剂(纯度≥99.5% )混合而成,甲

气相色谱-质谱联用 原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

气相色谱质谱联用原理和应用

气相色谱质谱联用原理 和应用 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用( GC-MS) 具有灵敏度

气相色谱-质谱联用技术..-共15页

气相色谱-质谱联用技术 气相色谱-质谱联用技术,简称质谱联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术,在化工、石油、环境、农业、法医、生物医药等方面,已经成为一种获得广泛应用的成熟的常规分析技术。 1、产生背景 色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性,且对未知化合物进行鉴定,需要高纯度的样本,否则杂质形成的本底对样品的质谱图产生干扰,不利于质谱图的解析。气相色谱法对组分复杂的样品能进行有效的分离,可提供纯度高的样品,正好满足了质谱鉴定的要求。 气相色谱-质谱联用(gas chromatography-mass sepetrometry , GC-MS)技术综合了气相色谱和质谱的优点,具有GC的高分辨率和质谱的高灵敏度、强鉴别能力。GC-MS可同时完成待测组分的分离、鉴定和定量,被广泛应用于复杂组分的分离与鉴定。 2、技术原理与特点 气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。保留时间是气象色谱进行定性的依据,而色谱峰高或峰面积是定量的手段,所以气相色谱对复杂的混合物可以进行有效地定性定量分析。其特点在于高效的分离能力和良好的灵敏度。由于一根色谱柱不能完全分离所有化合物,以保留时间作为定性指标的方法往往存在明显的局限性,特别是对于同分异构化合物或者同位素化合物的分离效果较差。 质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。其主要特点是迁建的结构鉴定能力,能给出化合物的分子量、分子式及结构信息。在一定条件下所得的MS碎片图及相应强度,犹如指纹图,易与辨识,方法专属灵敏。但质谱拘束最大的不足之处在与要求样品是单一组分,无法满足复杂物质的分析。

气相色谱-质谱联用技术

气相色谱-质谱联用技术 本章目录(查看详细信息,请点击左侧目录导航) 第一节气相色谱质谱联用仪器系统 一、GC-MS系统的组成 二、GC-MS联用中主要的技术问题 三、GC-MS联用仪和气相色谱仪的主要区别 四、GC-MS联用仪器的分类 五、一些主要的国外GC-MS 联用仪产品简介 第二节气相色谱质谱联用的接口技术 一、GC-MS联用接口技术评介 二、目前常用的GC-MS接口 第三节气相色谱质谱联用中常用的衍生化方法 一、一般介绍 二、硅烷化衍生化 三、酰化衍生化 四、烷基化衍生化 第四节气相色谱质谱联用质谱谱库和计算机检索 一、常用的质谱谱库 二、NIST/EPA/NIH库及其检索简介 三、使用谱库检索时应注意的问题 四、互联网上有关GC-MS和的信息资源 第五节气相色谱质谱联用技术的应用 一、GC-MS检测环境样品中的二噁英 二、GC-MS在兴奋剂检测中的应用 三、GC-MS区分空间异构体 四、常用于GC-MS 检测提高信噪比的方法 五、GC-MS(TOF)的应用 气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现 GC-M S系统的组成 气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即

GC-MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。GC-MS逐步成为分析复杂混合物最为有效的手段之一。 GC-MS联用仪系统一般由图11-3-1所示的各部分组成。 气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。 GC-M S联用中主要的技术问题 气相色谱仪和质谱仪联用技术中主要着重要解决两个技术问题: 1.仪器接口 众所周知,气相色谱仪的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱内的流速不同,使各组分分离,最后和载气一起流出色谱柱。通常色谱往的出口端为大气压力。质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。因此,接口技术中要解决的问题是气相色谱仪的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把气相色谱柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。

气质色谱质谱联用仪GCMS技术方案流程

气质色谱质谱联用仪GCMS技术方案流 程

气质色谱-质谱联用仪GC-MS 5977A高聚物分析仪 技术方案 中国石油集团西部钻探工程公司井下作业公司 10月

一、概述 1、说明 本技术方案书规定了西部钻探井下公司研究所,购买的气质色谱-质谱联用仪GC-MS 5977A在硬件、软件、培训、售后技术支持等方面的最低技术要求,供货商所提供的产品必须全部达到这些技术指标。 2、气质色谱-质谱联用仪总体要求 2.1整体设计科学合理,安全可靠,技术在国际上处于领先水平,而且在国内外各领域应用广泛。 2.2测量精准度高,密封性能好;材质优良、耐腐蚀;气质联用仪、多功能裂解仪、GPC色谱以及各种仪表阀件等安装合理,便于操作;漆面光洁、无划痕;标牌位置合理,文字准确清晰。 2.3数据处理系统科学准确,便于升级。 2.4适用于油气田易燃易爆环境。 2.5气质色谱-质谱联用仪要求可准确完成对高分子聚合物的特征鉴别分析实验,为油田开发生产提供科学的检测依据。 二、工艺条件及选型 1.气相质谱联用仪:主机,质谱检测器,辅助EPC,分流/不分流进样口,裂解器,GPC液相色谱和化学工作站。 2.工作条件 电源:220V,50Hz

温度:操作环境15?C-35?C 湿度:操作状态25-50%,非操作状态10-90% 3. 技术性能 3.1 气相色谱 3.1.1 主机 3.1.1.1 电子流量控制(EPC):所有流量、压力均能够电子控制, 以提高重现性,13路电子流量控制 3.1.1.2 压力调节:0.001psi 3.1.1.3 保留时间重现性:<0.0008min,峰面积的重现性:<1% RSD 3.1.1.3 大气压力传感器补偿高度或环境变化 3.1.1.4 程序升压/升流:5阶 具有4种EPC操作模式:恒温,恒压,程序升压,程序升流 3.1.2 炉箱 3.1.2.1 操作温度:室温以上4?C至450?C 3.1.2.2 温度设定:1?C ,程序升温间隔 0.1?C 3.1.2.3 升温速度:0.1?C -120?C / min (最大) 3.1.2.4 程序升温:20 阶,21个温度平台 3.1.2.5 稳定性:< 0.01?C 3.1.2.6 温度准确度:± 1% 3.1.2.7 炉箱冷却速度:450?C到50?C, 240秒

气相色谱-质谱联用原理和应用

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用( GC

JJF气相色谱仪质谱联用仪

台式气相色谱质谱联用仪校准规范 1范围 本规范适用于离子阱和四极杆型台式气相色谱 -质谱联用仪(以下简称台式GC-MS)的校准,其它类型台式GC-MS的校准可参照此规范进行。 2引用文献 JJF 1001—1998通用计量术语及定义 JJF 1059-1999测量不确定度评定与表示 GB/T 15481—1995校准和检验实验室能力的通用要求 GB/T 6041 — 2002质谱分析方法通则 JJG (教委)003—1996有机质谱仪检定规程 JJG 700-1999气相色谱仪检定规程 OIML/TC16/SC2/R83 Gas chromatograph/mass spectrometer system for an alysis of rganic polluta nts in water 使用本规范时,应注意使用上述引用文献的现行有效版本。 3术语和计量单位 3.1分辨力(resolution) 分辨两个相邻质谱峰的能力,对于台式 GC-MS以某离子峰峰高50%处的峰宽度(简称半峰宽)表示,记为W1/2,单位u。 3.2基线噪声(baseline noise 基线峰底与峰谷之间的宽度,单位计数。 3.3信噪比(signal-to-noise ratio) 待测样品信号强度与基线噪声的比值,记为SN。 3.4质量色谱图(mass chromatogram质谱仪(和色谱图是两回事) 质谱仪在一定质量范围内自动重复扫描所获得的质谱数据,可以不同形式再现,其中 以一个或多个离子强度随时间变化的谱图,称为质量色谱图。 3.5质量准确性(mass accuracy 仪器测量值对理论值的偏差。 3.6u (atomic mass unit) 原子质量单位。 4概述 气相色谱-质谱联用仪是将气相色谱仪与质谱仪通过一定接口耦合到一起的分析仪 器。样品通过气相色谱的分离后的各个组分依次进入质谱检测器,组分在离子源被电离, 产生带有一定电荷、质量数不同的离子。不同离子在电场和 /或磁场中的运动行为不同,米用不同质量分析器把带电离子按质荷比(m/z)分开,得到依质量顺序排列的质谱图。通过对质谱图的分析处理,可以得到样品的定性、定量结果。气相色谱-质谱联用仪主要包括

实验三 气相色谱-质谱联用仪定性分析液体混合物

实验三气相色谱-质谱联用仪定性分析液体混合物 一、实验目的 1. 了解质谱检测器的基本组成及功能原理 2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。 二、实验原理 气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。目前,小型台式GC-MS已成为很多实验室的常规配置。 1. 质谱仪的基本结构和功能 质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。 质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。 气相色谱-质谱联用仪的进样系统由接口和气相色谱组成。接口的作用是使经气相色谱分离出的各组分依次进入质谱仪的离子源。接口一般应满足如下要

气相色谱-质谱联用技术定性鉴定混合溶剂的成分

实验七气相色谱-质谱联用技术 定性鉴定混合溶剂的成分 I. 实验目的 (1)了解气相色谱-质谱联用技术的基本原理; (2)学习气相色谱-质谱联用技术定性鉴定的方法; (3)了解色谱工作站的基本功能。 II. 实验原理 质谱法是一种重要的定性鉴定和结构分析方法,但没有分离能力,不能直接分析混合物。色谱法则相反,它是一种有效的分离分析方法,特别适合于复杂混合物的分离,但对组分的定性鉴定有一定难度。如果把这两种方法结合起来,将色谱仪作为质谱仪的进样和分离系统,即混合试样进入色谱柱分离,得到的单个组分按保留时间的大小依次进入质谱仪测定 质谱,这样就可以实现优势互补,解决复杂混合物的快速分离和定性鉴定。气相色谱-质谱 联用(GC-MS )于1957年首次实现,并很快成为一种重要的分析手段广泛应用于化工、石油、食品、药物、法医鉴定及环境监测等领域。 气相色谱-质谱联用的主要困难是两者的工作气压不匹配。质谱仪器必须在10-3?10-4Pa 的高真空条件下工作,而气相色谱仪的流出物为常压(约100kPa),因此需要一个硬件接口 来协调两者的工作条件。当气相色谱仪使用毛细管柱时,因为每分钟几毫升的流量不足以破 坏质谱仪的真空状态,所以可直接与质谱仪联用。 挥发性混合物从气相色谱仪进样,经色谱柱分离后,按组分的保留时间大小依次以纯物质形式进入质谱仪,质谱仪自动重复扫描,计算机记录和储存所有的质谱信息,然后将处 理结果显示在屏幕上。质谱仪的每一次扫描都得到一张质谱图,色谱组分流入时得到的是组 分的质谱图,没有色谱组分时得到的是背景的质谱图,计算机将质谱仪重复扫描得到的所有 离子流信号(不分质荷比大小)的强度总和对扫描信号(即色谱保留时间)作图得到总离子 流图,总离子流强度的变化正是流入质谱仪的色谱组分变化的反映,所以在GC-MS中,总 离子流图相当于色谱图,每一个谱峰代表了一个组分,谱峰的强度与组分的相对含量有关。下图是混合溶剂试样的总离子流图(a)和其中第4号峰的质谱图(b)。从总离子流图中出 现的6个谱峰可以得知该混合溶剂中有6个组分;对质谱图(b)进行解析可知该组分的相 对分子质量为100,图中有m/z29,43,57,71等一系列间隔14 (相当于CH?)的离子峰,说明该组分的结构中有长碳链,结合相对分子质量推测为庚烷,通过质谱标准谱库的检索验 混合溶剂的总离子流图(a)和4号峰的质谱图(b) III.实验用品 仪器:岛津公司GCMS-QP5050A气相色谱-质谱联用仪,GCMS Solution工作站,NIST 谱库。微量注射器(1山) 试剂:混合试剂异丙醇、乙酸乙酯、苯3种试剂(纯度》99.5% )混合而成,甲

气相色谱质谱连用的原理、应用和进展

气相色谱-质谱连用的原理、应用和进展

————————————————————————————————作者:————————————————————————————————日期:

气相色谱-质谱连用的原理、应用和进展 物理化学 2015111154 魏斌娟1、引言 气相色谱法是一种新的分离分析技术。其出现在二十世纪五十年代,经过多年的发展,气相色谱法已经广泛应用于国防,农业等领域。将气体作为流动相的色谱法成为气相色谱法,因为气相中样品的传递速度是最快的,所以将样品非别放在流动相和固定相之间可以迅速使其达到平衡状态。随着科技的发展,近年来,将高灵敏度选择性检测器与气相色谱法相结合,可以大大提高其分析灵敏度,扩大其应用范围。但是由于气相色谱的定性能力不强,所以只能依靠组分的保留特性来对样品进行定性,应用很不方便,随着计算机技术的发展,气相色谱质谱联用技术应运而生。气相色谱质谱联用技术涵盖了气相色谱法的优点,并且弥补了其定性不强的缺点。随着技术的日益成熟,其功能也日益完善,目前,气相色谱质谱联用技术在食品、药物、生命科学等领域都有着广泛的应用。[1] 2、气质联用技术的基本原理 质谱法(Mass Spectrometry , MS)的基本原理是有机物 样品在离子源中发生电离,生成不同质荷比(m/z)的带正电荷离子,经加速电场的作用形成离子束,进入质量分析器,在其中再利用电场和磁场使其发生色散、聚焦,获得质谱图。根

据质谱图提供的信息可进行有机物、无机物的定性、定量分析,复杂化合物的结构分析,同位素比的测定及固体表面的结构和组成的分析。 气相色谱法(Gas chromatography, GC)是近年来应用日趋广泛的分析技术。由于是以气体作为流动相,所以传质速度快,一般的样品分析可在20~30s完成,具有分离效能高,灵敏度高的特点。总体而言,色谱法对有机化合物是一种有效的分离和分析方法 ,特别适合进行有机化合物的定量分析 ,但定性分析则比较困难。 气-质联用(GC-MS)法利用了色谱的高分离能力和质谱的高鉴别特性,可对复杂的混合样品进行分离、定性、定量分析的一次完成,是一种完美的现代分析方法 ,因此两者的有效结合必将为化学家及生物化学家提供一个进行复杂化合物高效的定性定量分析的工具。色谱—质谱联用已经是一个比较成熟的技术,它结合了色谱对混合有机化合物较强的分离能力和质谱的极高的灵敏度和强大的鉴定能力,成为目前剖析有机混合物的强有力的武器[2]。 气-质联用(GC-MS)法在对样品进行分析检测时,混合物样品经过分离进入质谱仪离子源,经过电离过程转化成离子,然后离子再逐步经过质量分析器和检测器成为质谱信号录入到计算机中。在检测过程中,样品不断的流入离子源,只需将分析器的扫描的质量和扫描的时间设置在一定范围

气相色谱-质谱(GC-MS)联用技术及其应用(精)

气相色谱-质谱(GC-MS )联用技术及其应用 摘要:气相色谱法—质谱(GC-MS )联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。本文主要列举了GC-MS 在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。 关键词:GC-MS ,应用,药物检测,环境 1 气相色谱-质谱(GC-MS )联用 气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS )是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS 也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 气相色谱—质谱(GC —MS )联用技术是由两个主要部分组成:即气相色谱(GC )部分和质谱(MS )部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。GC 是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。GC 可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。MS 是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS 只能对纯物质进行定性,对混合组分定性无能为力。 把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多倍。单用气相色谱或质谱是不可能精确地识别一种特定的分子的。通

气相色谱-质谱(GC-MS)联用技术及其应用

气相色谱-质谱(GC-MS)联用技术及其应用 摘要:气相色谱法—质谱(GC-MS)联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。本文主要列举了GC-MS在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。 关键词:GC-MS,应用,药物检测,环境 1 气相色谱-质谱(GC-MS)联用 气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 气相色谱—质谱(GC—MS)联用技术是由两个主要部分组成:即气相色谱(GC)部分和质谱(MS)部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。GC是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。GC可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。MS是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS只能对纯物质进行定性,对混合组分定性无能为力。 把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多倍。单用气相色谱或质谱是不可能精确地识别一种特定的分子的。通常,经质谱仪处理的需要是非常纯的样品,而使用传统的检测器的气相色谱(如火焰离子化检测器)当有多种分子通过色谱柱的时间一样时(即具有相同的保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子。在单独使用质谱检测器时,也会出现样式相似的离子化碎

气相色谱-质谱联用(GC-MS)

气相色谱-质谱联用(GC-MS) 一、实验目的 1. 了解质谱检测器的基本组成及功能原理,学习质谱检测器的调谐方法; 2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。 二、实验原理 气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。目前,小型台式GC-MS已成为很多实验室的常规配置。 1. 质谱仪的基本结构和功能 质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。 质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。

相关文档