文档视界 最新最全的文档下载
当前位置:文档视界 › 122011概率统计(A)2014-2015(1)钱伟民-花虹

122011概率统计(A)2014-2015(1)钱伟民-花虹

122011概率统计(A)2014-2015(1)钱伟民-花虹
122011概率统计(A)2014-2015(1)钱伟民-花虹

2014—2015学年第一学期(A 卷)

年级 专业 学号 姓名 任课教师 题号 一 二 三 四 五 六 七 八 总分 得分

(注意:本试卷共8大题,3大张,满分100分.考试时间为120分钟.除填空题外要求写出解题过程,否则不

予计分)

备用数据:(1)0.8413(2)0.9772Φ=Φ=,975.0)96.1(=Φ.

一、填空题(16分)

1、(4分)设B A ,为两个随机事件,若52.0)(=AB P ,3.0)(=B P ,()6.0=?B A P ,则

)(B A P -= , ()

B A P = .

2、(4分)设随机变量X ~)16,4(N , 则|4|-=X Y 的概率密度为

()Y f y ?

?

=?

?

?

.

3、(4分)设随机变量X 服从自由度为2的2

χ分布,用

)2(2αχ表示自由度为2的2χ分布的α

分位数,且

()02.0)(,95.0=>=<

y = .(请用X 所服从的分布的分位数表示).

4、(4分)设821,,,X X X 是取自正态总体),(2σμN 的简单随机样本,∑==4

1141i i X Y ,∑==8

5

241i i X Y

,2S S =,则S

Y Y )(221-服从自由度为 的 分布. 二、(10分) 设随机变量X 与Y 相互独立,且X 服从正态分布)4,2(N ,Y 服从参数为0.5的指数分布)5.0(E ,求方差D(XY)和协方差),cov(Y X Y X -+.

三、(12分)设某同学的手机在一天内收到短信数服从参数为λ的泊松分布)(λP ,每个短信是否为垃圾短信与其到达时间独立,也与其他短信是否为垃圾短信相互独立. 如果假设每个短信是垃圾短信的概率为p .

(1)如果已知该同学的手机一天内收到了n 条短信,求其中恰有k 条垃圾短信的概率.(n k ≤≤0).

(2)求该同学的手机一天内收到k 条垃圾短信的概率.( ,2,1,0=k ).

四、(14分) 假设离散型随机变量21X X 与都只取-1和1,且满足

5.0)1(1=-=X P ,()3

1

11)11(1212====-=-=X X P X X P .

(1)求),(21X X 的联合概率函数;(2)求概率)0(21=+X X P ; (3)分别求21X X 与的协方差和相关系数),(),,(2121X X X X Cov ρ.

五、(16分)设二维随机变量),(Y X 的联合密度函数为

22,

1(,)0,

ax y x y f x y ?<<=?

?其他

(1) 求常数a ; (2) 分别求X 和Y 的边缘密度函数; (3) 求概率()1,0≤≤Y X P ; (4)求概率)(Y X P ≤.

六、(10分) 某城市每次交通堵塞造成的平均损失为15万元,损失的标准差是3万元.假设各

次堵塞造成的损失是相互独立的,且服从相同的分布.如果今天该城市发生了100次交通堵塞,试用中心极限定理求今天该城市由于交通堵塞造成的损失在1440万元到1530万元之间的概率 .

∑=-=

8

5

222)(31

i i Y X S

七、(8分) 设某工厂生产的化纤强度X 服从正态分布2(,)N μσ,长期以来其标准差85.0=σ,现从该厂生产的产品中抽取了25个样品,测定其强度,并由此算出样本均值为,25.2=x 试求μ的置信水平0.95的双侧置信区间。(结果保留四位小数)

八、(14分) 设n X X X ,,,21 是取自总体X 的简单随机样本,X 的概率密度函数为

343,

(,)0,

x x f x θθθ-?≥=?

?其他

,其中0>θ. θ未知.

(1)求θ的矩估计θ~

和极大似然估计θ?;

(2)问:θ的矩估计θ~

是否为θ的无偏估计?请说明理由. (3)问:θ的极大似然估计θ?是否为θ的无偏估计?请说明理由.

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

概率论习题及答案()

概率论习题 一、填空题 1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 . 2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率. 3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 . 4、已知()0.7,()0.3,P A P A B =-= 则().P AB = 5、已知()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ?= 6、掷两枚硬币,至少出现一个正面的概率为.. 7、设()0.4,()0.7,P A P A B =?= 若,A B 独立,则().P B = 8、设,A B 为两事件,11()(),(|),36 P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是. 10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 . 11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。那么(|)P C AB = 。 12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的人群中随机地 表示为互不相容事件的和是 。15、,,A B C 中不多于两个发生可表示为 。 二、选择题 1、下面四个结论成立的是( ) 2、设()0,P AB =则下列说法正确的是( ) 3、掷21n +次硬币,正面次数多于反面次数的概率为( ) 4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( ) 5、设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) .A P (AB )=0 .B P (A -B )=P (A )P (B ) .C P (A )+P (B )=1 .D P (A |B )=0 6、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) .A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ) .D P (A ∪B )=1

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

09-10-1-概率统计A--期末考试试卷答案

诚信应考 考出水平 考出风格 浙江大学城市学院 2009— 2010学年第 一学期期末考试试卷 《 概率统计A 》 开课单位: 计算分院 ;考试形式: 闭卷; 考试时间:2010年 1 月24日; 所需时间: 120 分钟 题序 一 二 三 总 分 得分 评卷人 一. 选择题 (本大题共__10__题,每题2分共__20 分) 1、已知()0.87.0)(,8.0)(===B A P B P A P ,,则下列结论正确的是(B ) )(A 事件B A 和互斥 )(B 事件B A 和相互独立 )(C )()()(B P A P B A P += )(D B A ? 2、设)(1x F 和)(2x F 分别为随机变量1X 和2X 的分布函数,为使)()()(21x bF x aF X F -=为某一随机变量的分布函数,在下列各组数值中应取( A ) )(A 5/2,5/3-==b a )(B 3/2,3/2==b a )(C 2/3,2/-1==b a )(D 2/3,2/1-==b a 3、设随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率() σμ<-X P 满足 ( C ) )(A 单调增大 )(B 单调减少 )(C 保持不变 )(D 增减不定 4、设),(Y X 的联合概率密度函数为?? ???≤+=其他, 01 ,1),(2 2y x y x f π,则X 和Y 为 ( C )的随机变量 )(A 独立且同分布 )(B 独立但不同分布 )(C 不独立但同分布 )(D 不独立 且不同分布 得分 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名:__________________ …………………………………………………………..装………………….订…………………..线… …………………………………………………… 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名________________ …………………………………………………………..装………………….订…………………..线………………………………………………………

概率论

一 1、若事件A 出现,事件B 和事件C 都不出现,则可表示为 。 2、已知,6.0)(,4.0)(,==?B P A P B A 则)(A B P -= 。 3、皮尔逊做掷一枚均匀硬币的试验,观察“正面朝上”这一事件A ,在12000次试验中,事件A 出现了6019次,则事件A 出现的频率是 。 4、已知随机变量A 的概率,5.0)(=A P 随机事件B 的概率,6.0)(=B P 条件概率 ,8.0)|(=A B P 则=?)(B A P 。 5、某工厂有甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的%,40%,35%,25各个车间产品的次品率分别为%,2%,4%,5则该厂产品的次品率为 。 6、假设X 是连续型随机变量,其概率密度函数为???<<=. 030)(2其它,; ,x cx x f ,则 =c 。 7、设二维随机变量 ) ,(Y X 的联合分布函数为 ),arctan )(arctan (),(y C x B A y x F ++=则=A ,=B ,=C 。 8、设Y 服从)4,5.1(N ,则=>}2{X P 。 9、设随机变量)16,1(~),4,1(~N Y N X ,则=+)(Y X E 。 10、设X 和Y 是相互独立,X 服从标准正态分布,Y 服从自由度为n 的卡方分布,称随机变量:n Y X T = 的分布为自由度为 的 分布。 二、设有一批量为50的同型号产品,其中次品10件,现按以下两种方式随机抽取2件产品:(1)有放回抽取,即先任取一件,观察后放回批中,再从中任取一件;(2)不放回抽取,即先任取一件,观察后不放回批中,从剩余的产品中再任取一件。试分别按这两种抽取方式,求 (a)、两件都是次品的概率? (b)、第一件是次品,第二件是正品的概率?

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=??

分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()(Y (n 可 以取∞) 2.概率的一些重要性质: (i ) 0)(=φP (ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( Y (n 可以取∞)

概率论期末试卷

填空题(每小题4分,共32分). 1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A B ) = _______; 若 A 与 B 相互独立, 则 P (A B ) = _________. 2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________. 2014-2015学年《概率论与数理统计》期末考试试卷 (B) 一、填空题(每小题4分,共32分). 1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A B ) = _______; 若 A 与 B 相互独立, 则 P (A B ) = _________. 2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________. 3.设随机变量 X 的分布函数为,4 ,1 42 ,7.021 ,2.01 ,0 )(???? ?? ?≥<≤<≤--<=x x x x x F 则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为 X 1 2 3 p k 0.5 0.3 a 则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} = _________ . 5.设随机变量 X 服从二项分布 b (100, 0.2), 则 E (X ) = ________, D (X ) = ___________. 6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X +2Y ) = _________.

概率论的那些事儿

概率论的那些事 院系:自动化测试与控制系姓名:XXX 学号:1130110XXX 导师:XXXX

摘要:概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。 关键字:概率论博弈发展生活 发展史 概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。另一方面,由于数学家参与讨论分赌本问题导致惠根斯完成了《论赌博中的计算》一书,由此奠定了古典概率论的基础。使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布伯努利。他的主要贡献是建立了概率论中的第一个极限定理《伯努利大数定理》。之后,法国数学家棣莫弗在他的著作《分析杂论》中提出了著名的《棣莫弗—拉普拉斯定理》。接着拉普拉斯在1812年出版了《概率的分析理论》,首先明确地对概率作了古典的定义。经过高斯和泊松等数学家的努力,概率论在数学中地位基本确立。到了20世纪的30年代,通过俄国数学家柯尔莫哥洛夫在概率论发展史上的杰出贡献,完全使概率论成为了一门严谨的数学分支。近代又出现了理论概率及应用概率论的分支,概率论被广泛的应用到了不同范筹和不同的学科。今天概率论已经成为一个非常庞大的数学分支。研究事物发生究数字重复的几率. 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯又导出了第二个 基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数 学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方 面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。在总体上,概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡 尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些 简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则 是玩家连续掷4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用2 个骰子连续掷24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数

概率论与数理统计答案

习题答案 第1章 三、解答题 1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确. 2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤, 又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以 (1) 当)()(B A P B P = 时P (AB )取到最大值,最大值是)()(A P AB P ==. (2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ). 解:因为)()(B A P AB P =, 即)()()(1)(1)() (AB P B P A P B A P B A P AB P +--=-== , 所以 .1)(1)(p A P B P -=-= 4.已知P (A ) = ,P (A – B ) = ,试求)(AB P . 解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P . 5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n =种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:1 5 C k =24C 212)(C +25C

概率论与数理统计期末试卷

概率论与数理统计 一、 单项选择题 1如果A ,B 为任意事件,下列命题正确的是 ( )。 A :若A , B 互不相容,则A B ,也互不相容 B :若A ,B 相互独立,则A B ,也 相互独立 C :若A,B 不相容,则A,B 互相独立 D : AB A B =? 2某人独射击时中靶率为2/3,若射击直到中靶为止,则射击次数为4的概率是( ) A:323?? ??? B: 32133??? ??? C: 31233??? ??? D: 3 13?? ??? 3设X 的密度为20()0x ke x f x -?>=??其它,则=k ( ) A:2 B:1/2 C: 4 D: 1/4 4. 设)1,3(~..-N X V R ,)1,2(~..N Y V R ,且X 和Y 相互独立,令72+-=Y X Z , 则Z 服从( )分布。 A:)5,0(N B:)3,0(N C:)46,0(N D:)54,0(N 5,如果X,Y 为两个随机变量,满足0XY ρ=,下列命题中错误的是 ( )。 A :X,Y 不相关 B :X,Y 相互独立 C :E(XY) =E(X)E(Y) D :D(X-Y) =D(X)+D(Y) 二、填空题(本大题共有6个小题,每空2分,共20分) 4 A,B 为两个随机事件,若P(A)=0.4,P(B)=0.2,若A,B 互不相容,则P(A-B)= ,P(A B ?)= 5 一个袋中装有5个白球4个黑球。从中随机取2个(不放回),则取出的球依 次为白,黑两球的概率为 ,取出第二个为白球的概率为 ,如果已知第 二次取出的为白球,则第一次取出的为黑球的概率为 6某学生和朋友约定:在他参加的3门不同的考试中如果有一门过了95分就要 开香槟庆祝,已知他这3门功课过95分的概率分别为1/2,1/4,1/5,则他们开香 槟庆祝的概率为 7.若在高中生中,学生的平均身高为165厘米,方差为10,利用切比雪夫不等 式估计身高在160厘米~170厘米之间的概率至少为 8若X~N(1,4),Y 的概率密度函数,0()0,y e y f y -?>=??其它 ,X,Y 互相独立,则 E(2X+Y-2XY+2)= ,D (2X+Y-2)=

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 % 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 > 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论的起源和发展

概率论的起源和发展 概率论是一门既古老又年轻的学科。说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。一般认为,概率论的历史只有短短的三百多年时间。虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1、机会的早期计算 古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。 卡尔扎诺是一位医学博士, 曾在米兰讲授数学, 写过多部医学、数学等方面的著作。他认为赌博是一种社会病, 也有理由作为可以医治的疾病来研究。约在1564 年, 他集中了自己的智慧和赌博经验, 用拉丁文写出著名的《论机会游戏》, 揭示了赌博中的不确定性原理, 成为概率论前史的重要人物。书中, 卡尔扎诺强调赌博的基本原则是同等条件,“如果它们有利于对手, 那么你是傻瓜, 如果有利于自己, 那么你就不公平”。骰子应该是“诚实的”, 几个诚实的骰子联合起来仍然是诚实的, 下注应该根据这种诚实性。等可能思想的提出是卡尔扎诺的贡献之一, 为理解和解决复杂的赌博问题提供了依据。他定义了胜率(有利结果数与不利结果数之比) 表示机会的大小, 计算出了多种赌博的全部可能结果数和有利结果数, 由于当时组合数学还很贫乏, 他的计算在方法上与《维图拉》基本相同。卡尔扎诺还思考了独立事件的乘法法则, 在一番错误推理后他发现了正确方法, 例如一次的胜率是 3:1, 连续两次的胜率是 9:7。卡尔扎诺是第一个深入讨论概率问题的人, 他提出了考虑随机问题的基本原则, 建立了胜率概念和一些运算法则, 对概率理论的形成具有开创性贡献。但是他也犯了不少错误, 例如他认为在掷两个骰子时, 36 次投掷有 1 次机会出现双 6, 平均起来 18次投掷中, 出现双 6 的机会是 50%。这种推理意味着36 次投掷中必定出现一次双 6, 他没有意识到自己的错误。由于该书只有很少部分讨论机会计算, 其等可能思想

《概率论与数理统计》答案

习题 1.1 1、(1)选中乘客是不超过30岁的乘车旅游的男性 (2)选中的乘客是不超过30岁的女性或以旅游为乘车目的 (3)选中乘客是不超过30岁的女性或乘车旅游的女性 (4)选中乘客是30岁以上以旅游为目的男性 2、(1)2010A B U (2)1053 1 1 1 i j k i j k A B C ===U U U U U (3) 2017 i i C =U (4)10 10 21 21 1 1 i j i j A C D --==U U U U 3、(1)1 n i i G =I (2) 1 n i i G =U (3)12123121n n n n G G G G G G G G G G G -L U L UL U L && 习题 1.2 1、(该题题目有误,请将()1/4P A =改作()1/3P A =) (1)1()()()()30P AB P A P B P A B =+-= U (2)3()()()()10 P AB P A B P A P AB =-=-= (3)7()1()10 P AUB P AB =-= (4)7()()()()()()15 P AB AB P AB P AB P AB P B P AB =+=+-=U 2、811 877 ?=? 3、(1)仅考虑末位:12110 15C C =(2)末位1和9的数的平方末位是1,故概率为:121101 5 C C = 4、至少两名女生的概率:541 22228 5 30 10.4046C C C C +- ≈ 5人全为女生的概率:58530 0.0004C C ≈ 5、一等奖:8 613316 1 5.643010C C -≈?二等奖:61761561 33168.464510C C C C -≈? 三等奖:511 6 6271613316 9.141710C C C C C -≈?四等奖: 511421 627156271 61 3316 0.0004C C C C C C C C +≈

概率统计期末试卷.docx

浙 江 工 业 大 学 概 率 统 计 期 末 试 卷 ( A ) (2009 ~ 2010 第 一 学 期) 2010-1-14 任课教师 学院: 班级: 上课时间:星期 ____,_____节 学号: 姓名: 一、选择题(每题 2 分 , 共 10 分) 1. n 个 随 机 变 量 X i (i 1,2,3, , n) 相 互 独 立 且 具 有 相 同 的 分 布 , 并 且 E( X i ) a , D( X i ) b , 则这些随机变量的算术平均值 X 1 n 的数学期望和方差分别 X i n i 1 为 ( ) ( A ) a , b ( B ) a , b ( C ) a , b ( D ) a , b 2 2. n n 2 n n 设 X 1 , X 2 , , X 500 为独立同分布的随机变量序列 , 且 X 1 ~ B(1, p) , 则下列不正确的为 ( ) 1 500 500 ~ B(500, p) (A) X i p (B) X i 500 i 1 i 1 500 ( ) ( ) P a X i b (C) i 1 500 b 500 p a 500 p (D) P a X i b Φ Φ . i 1 500 p(1 p) 500 p(1 p) 3. 设0 P( A) 1,0 P(B) 1, P(A | B) P( A | B ) 1, 则 ( ) (A) P( A | B) P(A) (B) B A (C) AB (D) P( AB) P( A)P(B) 4. 如果随机变量 X ,Y 满足 D( X Y) D ( X Y ) , 则必有 ( ) (A) X 与 Y 独立 (B) X 与Y 不相关 (C) DY 0 (D) DX 5. 设 A 和 B 是任意两个概率不为零的不相容事件 , 则下列结论中肯定正确的是 ( ) (A) A 与 B 不相容 (B) A 与 B 相 容 (C) P( AB) P( A)P(B) ; (D) P( A B) P( A) P(B) 二、填空题(每空 3 分 , 共 30 分) 1. 设 X ~ N (1, 1/ 2), Y ~ N (0, 1/ 2) , 且相互独立 , Z X Y , 则 P(Z 0) 的值为 ( 结果用正态分布函数 表示 ).

概率统计期末试卷

2008-2009学年第一学期期末试卷-B 卷 概率论与数理统计 课程号: 课序号: 开课学院: 统计学院 1. 设A 、B 是Ω中的随机事件,必有P(A-B)=P(A)-P(B) ( ) 2. 设A 、B 是Ω中的随机事件,则A ∪B=A ∪AB ∪B ( ) 3. 若X 服从二项分布B(n,p), 则EX=p ( ) 4. 样本均值X = n 1∑ =n i i X 1 是总体均值EX 的无偏估计 ( ) 5. X ~N(μ,21σ) , Y ~N(μ,22σ) ,则 X -Y ~N(0,21σ-22σ) ( ) 二、填空题(本题共15分,每小题3分) 1.设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且 ()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________. 2.甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中 各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________. 3.设随机变量X 的概率密度为2,01,()0, x x f x <

三、单项选择题(本题共15分,每小题3分) 1.设随机变量X和Y不相关,则下列结论中正确的是 (A)X与Y独立. (B)() D X Y DX DY -=+. (C)() D X Y DX DY -=-. (D)() D XY DXDY =. ()2.设随机变量X的概率密度为 2 (2) 4 (), x f x x + - =-∞<<∞ 且~(0,1) Y aX b N =+,则在下列各组数中应取 (A)1/2, 1. a b ==(B )2, a b == (C)1/2,1 a b ==-. (D )2, a b ==()3.设随机变量X与Y 相互独立,其概率分布分别为 01 0.40.6 X P 01 0.40.6 Y P 则有 (A)()0. P X Y ==(B)()0.5. P X Y == (C)()0.52. P X Y ==(D)() 1. P X Y ==()4.对任意随机变量X,若E X存在,则[()] E E EX等于 (A)0.(B).X(C). E X(D)3 (). E X()5.设 12 ,,, n x x x 为正态总体(,4) Nμ的一个样本,x表示样本均值,则μ的置信度为1α -的置信区间为 (A) /2/2 (x u x u αα -+ (B) 1/2/2 (x u x u αα - -+ (C)(x u x u αα -+ (D) /2/2 (x u x u αα -+() 四、(8分)甲、乙、丙三个炮兵阵地向目标发射的炮弹数之比为1∶7∶2, 而各地每发炮弹命目标的概率分别为0.05、0.1、0.2。求 (1)目标被击毁的概率; (2)若目标已被击毁,问被甲阵地击毁的概率。

概率论与数理统计知识点总结(完整超详细版)35387

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1 )S (=P

概率论与数理统计期末试卷及答案(最新6)

华南理工大学期末试卷 《概率论与数理统计》试卷A 卷 注意事项:1.考前请将密封线内各项信息填写清楚; 2.解答就答在试卷上; 3.考试形式:闭卷; 4.本试卷共八大题,满分100分,考试时间120分钟。 注:标准正态分布的分布函数值 Φ(2.33)=0.9901;Φ(2.48)=0.9934;Φ(1.67)=0.9525 一、选择题(每题3分,共18分) 1.设A 、B 均为非零概率事件,且A ?B 成立,则 ( ) A. P(A ?B)=P(A)+P(B) B. P(AB)=P(A)P(B) C. P(A ︱B)= ) () (B P A P D. P(A-B)=P(A)-P(B) 2. 掷三枚均匀硬币,若A={两个正面,一个反面},则有P(A)= ( ) A.1/2 B.1/4 C.3/8 D.1/8 3. 对于任意两个随机变量ξ和η,若E(ξη)=E ξE η,则有 ( ) A. D(ξ η)=D ξD η B. D(ξ+η)=D ξ+D η C. ξ和η独立 D. ξ和η不独立 4. 设P(x)=? ? ??∈],0[,0] ,0[,sin 2ππA x A x x 。若P(x)是某随机变量的密度函数,则常数A= ( ) A.1/2 B.1/3 C.1 D.3/2 5. 若ξ1,ξ2,…,ξ6相互独立,分布都服从N(u, 2 σ),则Z= ∑=-6 1 22 )(1 i i u ξ σ的密度函 数最可能是 ( )

A. f(z)=?? ???≤>0,00 ,1612 /2z z e z z B. f(z)= +∞<<-∞z e z ,12112/2π C. f(z)= +∞<<-∞-z e z ,12112 /2 π D. f(z)= ?????≤>-0 ,00,1612 /2z z e z z 6.设(ξ,η)服从二维正态分布,则下列说法中错误的是 ( ) A.(ξ,η)的边际分布仍然是正态分布 B.由(ξ,η)的边际分布可完全确定(ξ,η)的联合分布 C. (ξ,η)为二维连续性随机变量 D. ξ与η相互独立的充要条件为ξ与η的相关系数为0 二、填空题(每空3分,共27分) 1. 设随机变量X 服从普阿松分布,且P(X=3)=2 3 4-e ,则EX= 。 2. 已知DX=25 , DY=36 , XY r =0.4 , 则cov (X,Y)= ________. 3. 设离散型随机变量X 分布率为P{X=k}=5A k )2 1 ( (k=1,2,…),则A= . 4. 设ξ表示10次独立重复试验中命中目标的次数,每次射中目标的概率为0.6,则ξ 2 的 数学期望E(ξ2 )= . 5. 设随机变量ξ的分布函数F(x)=???≤>--0 ,00 ,1x x e x λ (λ﹥0),则ξ的密度函数 p(x)=______________ ,E ξ= , D ξ= . 6. 设X ~N(2, 2σ),且P{2

相关文档
相关文档 最新文档